论文标题

地理空间数据分析的深度学习技术

Deep Learning Techniques for Geospatial Data Analysis

论文作者

Kiwelekar, Arvind W., Mahamunkar, Geetanjali S., Netak, Laxman D., Nikam, Valmik B

论文摘要

消费电子设备(例如移动手机,带有RFID标签的商品,位置和位置传感器)不断生成大量的位置富含位置数据,称为地理空间数据。通常,这种地理空间数据用于军事应用。最近,围绕此类地理空间数据设计和部署了许多有用的民用应用程序。例如,推荐系统建议餐馆或吸引人地点访问特定地区。同时,公民机构正在利用通过遥感设备生成的地理空间数据,以为诸如交通监测,坑洼识别和天气报告等公民提供更好的服务。通常,此类应用程序在非等级机器学习技术(例如Naive-Bayes分类器,支持矢量机和决策树)等非等级机器学习技术上利用。深度学习领域的最新进展表明,基于神经网络的技术的表现优于常规技术,并为许多地理空间数据分析任务(例如对象识别,图像分类和场景理解)提供有效的解决方案。本章介绍了一项有关深度学习技术用于分析地理空间数据的应用的当前状态的调查。 本章如下:(i)深度学习算法的简要概述。 (ii)地理空间分析:用于遥感数据分析任务的数据科学观点(III)深度学习技术(IV)GPS数据分析(IV)深度学习技术的深度学习技术。

Consumer electronic devices such as mobile handsets, goods tagged with RFID labels, location and position sensors are continuously generating a vast amount of location enriched data called geospatial data. Conventionally such geospatial data is used for military applications. In recent times, many useful civilian applications have been designed and deployed around such geospatial data. For example, a recommendation system to suggest restaurants or places of attraction to a tourist visiting a particular locality. At the same time, civic bodies are harnessing geospatial data generated through remote sensing devices to provide better services to citizens such as traffic monitoring, pothole identification, and weather reporting. Typically such applications are leveraged upon non-hierarchical machine learning techniques such as Naive-Bayes Classifiers, Support Vector Machines, and decision trees. Recent advances in the field of deep-learning showed that Neural Network-based techniques outperform conventional techniques and provide effective solutions for many geospatial data analysis tasks such as object recognition, image classification, and scene understanding. The chapter presents a survey on the current state of the applications of deep learning techniques for analyzing geospatial data. The chapter is organized as below: (i) A brief overview of deep learning algorithms. (ii)Geospatial Analysis: a Data Science Perspective (iii) Deep-learning techniques for Remote Sensing data analytics tasks (iv) Deep-learning techniques for GPS data analytics(iv) Deep-learning techniques for RFID data analytics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源