论文标题

使用语音相似性矩阵评估语音化义义化评估

Speech Pseudonymisation Assessment Using Voice Similarity Matrices

论文作者

Noé, Paul-Gauthier, Bonastre, Jean-François, Matrouf, Driss, Tomashenko, Natalia, Nautsch, Andreas, Evans, Nicholas

论文摘要

言语技术的扩散和隐私立法的不断增长要求开发言语应用的隐私保护解决方案。这些是必不可少的,因为语音信号传达了大量丰富,个人和潜在敏感的信息。匿名是最近的语音私有计划的重点,是保护说话者身份信息的一种策略。假名解决方案不仅旨在掩盖说话者的身份,并保留语言内容,质量和自然性,而且匿名的目标也是如此,而且还保留了语音独特性。现有用于评估匿名化的指标是不适合的,并且完全缺乏评估假名的指标。基于语音相似性矩阵,本文提出了语音信号的假名性能的第一个直观可视化,以及两个用于客观评估的新型指标。它们反映了两个识别和声音独特性的两个关键的假名要求。

The proliferation of speech technologies and rising privacy legislation calls for the development of privacy preservation solutions for speech applications. These are essential since speech signals convey a wealth of rich, personal and potentially sensitive information. Anonymisation, the focus of the recent VoicePrivacy initiative, is one strategy to protect speaker identity information. Pseudonymisation solutions aim not only to mask the speaker identity and preserve the linguistic content, quality and naturalness, as is the goal of anonymisation, but also to preserve voice distinctiveness. Existing metrics for the assessment of anonymisation are ill-suited and those for the assessment of pseudonymisation are completely lacking. Based upon voice similarity matrices, this paper proposes the first intuitive visualisation of pseudonymisation performance for speech signals and two novel metrics for objective assessment. They reflect the two, key pseudonymisation requirements of de-identification and voice distinctiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源