论文标题

吉布斯从第二定律的顺序预测形式分布

Gibbs Distribution From Sequentially Predictive Form of the Second Law

论文作者

Hiura, Ken

论文摘要

我们提出了对工作提取的临时或顺序预测的表述,其中外部代理通过基于其预测策略的循环操作重复从热发动机中提取工作。我们表明,如果我们在这种情况下强加了热力学的第二定律,即使没有假定概率分布,发动机初始显微镜状态的经验分布也必须汇合到初始汉密尔顿的吉布斯分布。我们还提出了一个协议,其中代理只能更改少量的控制参数,该参数线性耦合到共轭变量。我们发现,在受限制的情况下,热力学第二定律的临时形式意味着相对于控制参数的大量共轭变量的强大定律。最后,我们提供了对我们的配方的游戏理论解释,并发现可以将临时工作提取被解释为Gibbs分布的随机数生成器的测试过程。

We propose a prequential or sequentially predictive formulation of the work extraction where an external agent repeats the extraction of work from a heat engine by cyclic operations based on his predictive strategy. We show that if we impose the second law of thermodynamics in this situation, the empirical distribution of the initial microscopic states of the engine must converge to the Gibbs distribution of the initial Hamiltonian under some strategy, even though no probability distribution are assumed. We also propose a protocol where the agent can change only a small number of control parameters linearly coupled to the conjugate variables. We find that in the restricted situation the prequential form of the second law of thermodynamics implies the strong law of large numbers of the conjugate variables with respect to the control parameters. Finally, we provide a game-theoretic interpretation of our formulation and find that the prequential work extraction can be interpreted as a testing procedure for random number generator of the Gibbs distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源