论文标题

一些低维球员的不释放

Uniruledness of some low-dimensional ball quotients

论文作者

Maeda, Yota

论文摘要

我们在复杂的球上定义反射模块化形式,并使用Gritsenko和Hulek的方法表明尺寸3、4和5的某些球标是未释放的。我们在想象中的二次字段的整数上举例说明了Hermitian晶格$ \ MATHBB {Q}(\ sqrt {-1})$和$ \ Mathbb {q}(\ sqrt {-2})$,与哪些相关的球均不适合。我们的示例包括$ \ mathbb {p}^1 $上的8点的模量空间。此外,我们发现他们的某些萨克斯 - 贝尔 - 骨压实是合理链连接的模量。

We define reflective modular forms on complex balls and use a method of Gritsenko and Hulek to show that some ball quotients of dimensions 3, 4 and 5 are uniruled. We give examples of Hermitian lattices over the rings of integers of imaginary quadratic fields $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-2})$ for which the associated ball quotients are uniruled. Our examples include the moduli space of 8 points on $\mathbb{P}^1$. Moreover, we find that some of their Satake-Baily-Borel compactifications are rationally chain connected modulo certain cusps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源