论文标题
MDCN:图像超分辨率的多尺度密集跨网络
MDCN: Multi-scale Dense Cross Network for Image Super-Resolution
论文作者
论文摘要
事实证明,卷积神经网络对于单像超分辨率(SISR)具有很大的好处。但是,以前的作品并未充分利用多尺度功能,而忽略不同上采样因子之间的尺度间相关性,从而导致了次优的性能。我们没有盲目地增加网络的深度,而是致力于挖掘图像特征,并学习不同上采样因子之间的尺度间相关性。为了实现这一目标,我们提出了一个多尺度密集的跨网络(MDCN),该跨网络以更少的参数和更少的执行时间实现了出色的性能。 MDCN由多尺度密集的交叉块(MDCB),分层特征蒸馏块(HFDB)和动态重建块(DRB)组成。其中,MDCB旨在检测多尺度特征并最大程度地利用图像特征在不同尺度上流动,HFDB专注于自适应重新校准的通道特征响应,以实现特征蒸馏,而DRB尝试将单个模型中不同型采样因子重建SR图像。值得注意的是,所有这些模块都可以独立运行。这意味着这些模块可以选择性地插入任何CNN模型以提高模型性能。广泛的实验表明,MDCN在SISR中取得了竞争成果,尤其是在具有多个上采样因子的重建任务中。该代码将在https://github.com/mivrc/mdcn-pytorch上提供。
Convolutional neural networks have been proven to be of great benefit for single-image super-resolution (SISR). However, previous works do not make full use of multi-scale features and ignore the inter-scale correlation between different upsampling factors, resulting in sub-optimal performance. Instead of blindly increasing the depth of the network, we are committed to mining image features and learning the inter-scale correlation between different upsampling factors. To achieve this, we propose a Multi-scale Dense Cross Network (MDCN), which achieves great performance with fewer parameters and less execution time. MDCN consists of multi-scale dense cross blocks (MDCBs), hierarchical feature distillation block (HFDB), and dynamic reconstruction block (DRB). Among them, MDCB aims to detect multi-scale features and maximize the use of image features flow at different scales, HFDB focuses on adaptively recalibrate channel-wise feature responses to achieve feature distillation, and DRB attempts to reconstruct SR images with different upsampling factors in a single model. It is worth noting that all these modules can run independently. It means that these modules can be selectively plugged into any CNN model to improve model performance. Extensive experiments show that MDCN achieves competitive results in SISR, especially in the reconstruction task with multiple upsampling factors. The code will be provided at https://github.com/MIVRC/MDCN-PyTorch.