论文标题
高斯光束中中性和带电颗粒的打结轨迹
Knotted trajectories of neutral and charged particles in Gaussian light beams
论文作者
论文摘要
利用近距离波方程与二维schrödinger方程之间的等效性,以分析方式获得了具有打结的淋巴结结构的单色光束。这些梁属于称为高几何高斯光束的宽类近似梁[E. Karimi,G。Zito,B。Piccirillo,L。Marrucci和E. Santamato,选择。 Lett。 {\ bf 32},3053(2007)]。处理了四个拓扑:UNNENGOT,HOPF链接,Borromean Rings和Trefoil。以数值方式显示,在初始条件的精确调整后,可以遵循相同的打结轨迹。类似的结果也适用于受到洪代电位的带电颗粒。这种效果可以通过表现出非平凡拓扑特征的选定的复杂途径来精确地转向颗粒,引导它们围绕障碍物,并且似乎有助于工程更复杂的纳米颗粒。
Making use of the equivalence between paraxial wave equation and two-dimensional Schrödinger equation, Gaussian beams of monochromatic light, possessing knotted nodal structures are obtained in an analytical way. These beams belong to the wide class of paraxial beams called the Hypergeometric-Gaussian beams [E. Karimi, G. Zito, B. Piccirillo, L. Marrucci and E. Santamato, Opt. Lett. {\bf 32}, 3053(2007)]. Four topologies are dealt with: the unknot, the Hopf link, the Borromean rings and the trefoil. It is shown in the numerical way that neutral polarizable particles placed in such light fields, upon precise tuning of the initial conditions, can be forced to follow the identical knotted trajectories. A similar outcome is also valid for charged particles that are subject to a ponderomotive potential. This effect can serve to precisely steer particles along chosen complicated pathways exhibiting non-trivial topological character, guide them around obstacles and seems to be helpful in engineering more complex nanoparticles.