论文标题
MR图像的基于斑块的大脑年龄估计
Patch-based Brain Age Estimation from MR Images
论文作者
论文摘要
磁共振图像(MRI)的脑年龄估计得出了受试者的生物脑年龄与年代年龄之间的差异。这是神经变性的潜在生物标志物,例如作为阿尔茨海默氏病的一部分。早期发现神经变性表现为较高的大脑年龄,可以促进受影响的个体更好的医疗和计划。已经提出了许多研究,用于使用机器学习,特别是深度学习技术来预测大脑MRI的年代年龄。与大多数使用整个大脑体积的研究相反,在这项研究中,我们开发了一种新的深度学习方法,该方法使用大脑的3D斑块以及卷积神经网络(CNN)来开发局部的大脑年龄估计器。通过这种方式,我们可以看到对估计大脑时代最重要作用的区域的可视化,从而导致更具解剖学驱动和可解释的结果,从而确认相关文献,这表明心室和海马是最有用的领域。此外,我们利用这些知识来通过使用合奏方法(例如平均或线性回归)组合不同斑块的结果来提高年龄估计任务的总体绩效。该网络在英国生物银行数据集中进行了培训,该方法的最先进结果的平均绝对误差为2.46年,纯粹是区域估计,而在偏置校正后的贴片合奏为2。13年,而偏置校正后的1.96年。
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age. This is a potential biomarker for neurodegeneration, e.g. as part of Alzheimer's disease. Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals. Many studies have been proposed for the prediction of chronological age from brain MRI using machine learning and specifically deep learning techniques. Contrary to most studies, which use the whole brain volume, in this study, we develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator. In this way, we can obtain a visualization of the regions that play the most important role for estimating brain age, leading to more anatomically driven and interpretable results, and thus confirming relevant literature which suggests that the ventricles and the hippocampus are the areas that are most informative. In addition, we leverage this knowledge in order to improve the overall performance on the task of age estimation by combining the results of different patches using an ensemble method, such as averaging or linear regression. The network is trained on the UK Biobank dataset and the method achieves state-of-the-art results with a Mean Absolute Error of 2.46 years for purely regional estimates, and 2.13 years for an ensemble of patches before bias correction, while 1.96 years after bias correction.