论文标题

VR盖:胶囊内窥镜检查的虚拟环境

VR-Caps: A Virtual Environment for Capsule Endoscopy

论文作者

Incetan, Kagan, Celik, Ibrahim Omer, Obeid, Abdulhamid, Gokceler, Guliz Irem, Ozyoruk, Kutsev Bengisu, Almalioglu, Yasin, Chen, Richard J., Mahmood, Faisal, Gilbert, Hunter, Durr, Nicholas J., Turan, Mehmet

论文摘要

当前的胶囊内窥镜和用于诊断和治疗胃肠道疾病的下一代机器人胶囊是复杂的网络物理平台,必须协调复杂的软件和硬件功能。这些系统的所需任务包括视觉定位,深度估计,3D映射,疾病检测和分割,自动导航,主动控制,路径实现和可选的治疗模块,例如有针对性的药物递送和活检采样。数据驱动的算法有望为胶囊内窥镜提供许多高级功能,但是现实世界中的数据挑战。提供合成数据的物理现实模拟已成为解决数据驱动算法的解决方案。在这项工作中,我们提出了一个用于胶囊内窥镜检查操作的全面模拟平台,并引入VR-Caps,VR-Caps是一种虚拟主动的胶囊环境,可模拟一系列正常和异常的组织条件(例如,膨胀,干,湿,湿,湿,湿,湿,湿润),胶囊内窥镜设计(例如,MONO,MONO,STEREO,DUAL和360&3600&360&s),以及胶囊的内窥镜设计,胶囊类型多样),以及能够活跃运动的来源。 VR-CAP使得为当前和下一代内窥镜胶囊系统独立或共同开发,优化和测试医学成像和分析软件成为可能。为了验证这种方法,我们使用VR-CAPS中的模拟数据来训练最先进的深层神经网络,以完成各种医学图像分析任务,并评估这些模型在实际医学数据上的性能。结果证明了所提出的虚拟平台在开发量化分数覆盖,摄像头轨迹,3D地图重建和疾病分类的算法中的有用性和有效性。

Current capsule endoscopes and next-generation robotic capsules for diagnosis and treatment of gastrointestinal diseases are complex cyber-physical platforms that must orchestrate complex software and hardware functions. The desired tasks for these systems include visual localization, depth estimation, 3D mapping, disease detection and segmentation, automated navigation, active control, path realization and optional therapeutic modules such as targeted drug delivery and biopsy sampling. Data-driven algorithms promise to enable many advanced functionalities for capsule endoscopes, but real-world data is challenging to obtain. Physically-realistic simulations providing synthetic data have emerged as a solution to the development of data-driven algorithms. In this work, we present a comprehensive simulation platform for capsule endoscopy operations and introduce VR-Caps, a virtual active capsule environment that simulates a range of normal and abnormal tissue conditions (e.g., inflated, dry, wet etc.) and varied organ types, capsule endoscope designs (e.g., mono, stereo, dual and 360°camera), and the type, number, strength, and placement of internal and external magnetic sources that enable active locomotion. VR-Caps makes it possible to both independently or jointly develop, optimize, and test medical imaging and analysis software for the current and next-generation endoscopic capsule systems. To validate this approach, we train state-of-the-art deep neural networks to accomplish various medical image analysis tasks using simulated data from VR-Caps and evaluate the performance of these models on real medical data. Results demonstrate the usefulness and effectiveness of the proposed virtual platform in developing algorithms that quantify fractional coverage, camera trajectory, 3D map reconstruction, and disease classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源