论文标题
调整可伸缩的高斯流程以表达统计学习
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
论文作者
论文摘要
对于学习任务,高斯流程(GP)有兴趣学习输入和输出之间的统计关系,因为它不仅提供了预测均值,还提供相关的变异性。然而,香草GP努力从高斯的边际和立方复杂性引起的大量数据中,从例如异性噪声,多模式和非平稳性的特性来学习复杂的分布。为此,本文研究了新的可扩展的GP范式,包括非平稳性异质分子GP,GP和潜在GP的混合物,它们引入了其他潜在变量以调节输出或输入,以学习更丰富的非高斯统计表示。我们进一步求助于不同的变异推理策略,以获得边际可能性的分析或更紧密的证据,以进行有效有效的模型培训。针对各种任务的最新GP和神经网络(NN)的广泛数值实验验证了这些可伸缩的调制GP的优越性,尤其是可伸缩的潜在GP,以学习各种数据分布。
For a learning task, Gaussian process (GP) is interested in learning the statistical relationship between inputs and outputs, since it offers not only the prediction mean but also the associated variability. The vanilla GP however struggles to learn complicated distribution with the property of, e.g., heteroscedastic noise, multi-modality and non-stationarity, from massive data due to the Gaussian marginal and the cubic complexity. To this end, this article studies new scalable GP paradigms including the non-stationary heteroscedastic GP, the mixture of GPs and the latent GP, which introduce additional latent variables to modulate the outputs or inputs in order to learn richer, non-Gaussian statistical representation. We further resort to different variational inference strategies to arrive at analytical or tighter evidence lower bounds (ELBOs) of the marginal likelihood for efficient and effective model training. Extensive numerical experiments against state-of-the-art GP and neural network (NN) counterparts on various tasks verify the superiority of these scalable modulated GPs, especially the scalable latent GP, for learning diverse data distributions.