论文标题
改进的算法以确定最低度至少7的图形的3色能力
Improved algorithm to determine 3-colorability of graphs with the minimum degree at least 7
论文作者
论文摘要
令$ g $为$ n $ vertex图,最高度$δ$和最低度$δ$。我们给出具有复杂性的算法$ O(1.3158^{n-0.7〜δ(G)})$和$ O(1.32^{N-0.73〜δ(G)} $,该$确定$ G $是否可固定时,当$ g $是3个固定时,当$ g $是$δ(g)\ geq 8 $和$Δ(g)(g)$Δ(g)$ geq 7 $,
Let $G$ be an $n$-vertex graph with the maximum degree $Δ$ and the minimum degree $δ$. We give algorithms with complexity $O(1.3158^{n-0.7~Δ(G)})$ and $O(1.32^{n-0.73~Δ(G)})$ that determines if $G$ is 3-colorable, when $δ(G)\geq 8$ and $δ(G)\geq 7$, respectively.