论文标题

AGI的元模型和框架

A Metamodel and Framework for AGI

论文作者

Latapie, Hugo, Kilic, Ozkan

论文摘要

人工智能系统能否表现出超人类的性能,但是以批判性的方式缺乏甚至单细胞生物的智能?对于狭窄的AI系统,答案显然是“是”。动物,植物,甚至单细胞生物都会学会可靠地避免危险并朝着食物发展。这是通过保存元模型的物理知识来实现​​的,该元模型自主生成了世界上有用的模型。我们认为,保留知识的结构对于更高的智力是至关重要的,无论是人类还是人造,都要管理越来越高的抽象水平。这是从将AGI子系统应用于需要持续学习和适应的复杂现实世界中学到的关键教训。在本文中,我们介绍了深层融合推理引擎(DFRE),该引擎实现了知识的元模型和用于构建应用AGI系统的框架。 DFRE元模型表现出一些重要的基本知识,这些知识保留了特性,例如对称和反对称关系之间的明显区别,以及创建层次知识表示的能力,可以清楚地描绘出抽象水平之间。包含这些功能的DFRE元模型表明,这种方法如何以特定方式使AGI受益,例如管理组合爆炸并实现累积,分布式和联合的学习。我们的实验表明,在无监督的对象检测和识别方面,所提出的框架平均达到了94%的精度。这项工作的灵感来自AGI的最先进方法,最近的抽烟工作,颗粒计算社区以及Alfred Korzybski的一般语义。

Can artificial intelligence systems exhibit superhuman performance, but in critical ways, lack the intelligence of even a single-celled organism? The answer is clearly 'yes' for narrow AI systems. Animals, plants, and even single-celled organisms learn to reliably avoid danger and move towards food. This is accomplished via a physical knowledge preserving metamodel that autonomously generates useful models of the world. We posit that preserving the structure of knowledge is critical for higher intelligences that manage increasingly higher levels of abstraction, be they human or artificial. This is the key lesson learned from applying AGI subsystems to complex real-world problems that require continuous learning and adaptation. In this paper, we introduce the Deep Fusion Reasoning Engine (DFRE), which implements a knowledge-preserving metamodel and framework for constructing applied AGI systems. The DFRE metamodel exhibits some important fundamental knowledge preserving properties such as clear distinctions between symmetric and antisymmetric relations, and the ability to create a hierarchical knowledge representation that clearly delineates between levels of abstraction. The DFRE metamodel, which incorporates these capabilities, demonstrates how this approach benefits AGI in specific ways such as managing combinatorial explosion and enabling cumulative, distributed and federated learning. Our experiments show that the proposed framework achieves 94% accuracy on average on unsupervised object detection and recognition. This work is inspired by the state-of-the-art approaches to AGI, recent AGI-aspiring work, the granular computing community, as well as Alfred Korzybski's general semantics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源