论文标题

微态计算均质化的牛顿求解器,实现了模式转换超材料的多尺度屈曲分析

A Newton Solver for Micromorphic Computational Homogenization Enabling Multiscale Buckling Analysis of Pattern-Transforming Metamaterials

论文作者

van Bree, S. E. H. M., Rokoš, O., Peerlings, R. H. J., Doškář, M., Geers, M. G. D.

论文摘要

机械超材料具有工程的微观结构,旨在表现出异国情调,通常是违反直觉的有效行为。这种行为通常是通过不稳定性的定期微结构对一个或多种模式模式的不稳定性诱导的转换来实现的。由于对单个重复的微观结构细胞的强大运动耦合,非本地行为和大小影响出现,因此无法通过经典的均质化方案轻易捕获。此外,单个模式模式可以在空间和时间上相互相互作用,而在工程规模上,整个结构可以在全球范围内扣紧。对于有效的数值宏观预测,最近已经开发了微态计算均质化方案。尽管该框架原则上能够考虑单个模式模式之间的空间和时间相互作用,但其实现依赖于基于梯度的准Newton解决方案技术。该求解器是次优的,因为(i)它具有下二次收敛性,并且(ii)不允许使用Hessians进行适当的分叉分析。鉴于机械超材料通常依赖于受控的不稳定性,因此这些限制是严重的。为了解决这些问题,本文详细介绍了牛顿的完整方法。宏观切线操作员的构建并不简单,这是由于与微态框架相关的基础位移场分解的特定模型假设,涉及正交性约束。给出了总势能的第一和第二变化的分析表达式,并列出了完整的算法。通过两个例子证明了开发的方法,其中存在本地和全球屈曲之间的竞争以及出现多种图案模式。

Mechanical metamaterials feature engineered microstructures designed to exhibit exotic, and often counter-intuitive, effective behaviour. Such a behaviour is often achieved through instability-induced transformations of the underlying periodic microstructure into one or multiple patterning modes. Due to a strong kinematic coupling of individual repeating microstructural cells, non-local behaviour and size effects emerge, which cannot easily be captured by classical homogenization schemes. In addition, the individual patterning modes can mutually interact in space as well as in time, while at the engineering scale the entire structure can buckle globally. For efficient numerical macroscale predictions, a micromorphic computational homogenization scheme has recently been developed. Although this framework is in principle capable of accounting for spatial and temporal interactions between individual patterning modes, its implementation relied on a gradient-based quasi-Newton solution technique. This solver is suboptimal because (i) it has sub-quadratic convergence, and (ii) the absence of Hessians does not allow for proper bifurcation analyses. Given that mechanical metamaterials often rely on controlled instabilities, these limitations are serious. To address them, a full Newton method is provided in detail in this paper. The construction of the macroscopic tangent operator is not straightforward due to specific model assumptions on the decomposition of the underlying displacement field pertinent to the micromorphic framework, involving orthogonality constraints. Analytical expressions for the first and second variation of the total potential energy are given, and the complete algorithm is listed. The developed methodology is demonstrated with two examples in which a competition between local and global buckling exists and where multiple patterning modes emerge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源