论文标题
低功率广阔网络设计
Low-Power Wide-Area Network Design
论文作者
论文摘要
LPWAN是一种用于长期,低功率和低成本物联网/CPS应用程序的能力技术。最近,已经开发了多种在许可(例如5G)和ISM(例如Lora)频段中运行的LPWAN技术。为了避免ISM乐队中的人群和许可乐队的成本,我们通过利用电视白色空间提出了一个名为“传感器网络”的新颖LPWAN,称为传感器网络(Snow)。具体而言,我们设计,开发和实验雪,高度可扩展,节能,并且沟通范围很长。雪通过使用来自众多传感器的单个无线电和同时的数据包传输到BS的单个无线电传输到来自BS的众多无线电,同时通过提出OFDM的分布式实现来实现,Snow通过在BS处启用了BS的单个无线电和同时的数据包传输,从而实现了可扩展性和能效。为了在实用应用中启用低成本和可扩展的雪地部署,我们使用低成本和小型的小COTS设备实施雪,在这里我们应对多个实际挑战,包括高峰值平均功率比率,渠道状态估计和运营商偏移估算。另外,我们提出了一种自适应传输功率协议来处理近乎频率的功率问题。为了使数万个以上数百公里的节点连接数万个节点,我们进一步提出了一个名为Snow-Tree的网络体系结构,通过多个雪的无缝集成,它们形成树结构并在相同的管理/控制下。我们通过制定一个称为可伸缩性优化问题(SOP)的受约束优化问题(SOP)来解决该内部和抢断的干扰,其目标是通过管理跨雪的光谱共享来最大化可伸缩性。通过证明SOP的NP硬度,我们提出了两个多项式时间方法来解决它:一种贪婪的启发式算法和1/2- approximation算法。
LPWAN is an enabling technology for long-range, low-power, and low-cost IoT/CPS applications. Recently, multiple LPWAN technologies have been developed that operate in the licensed (e.g., 5G) and ISM (e.g., LoRa) bands. To avoid the crowd in the ISM band and the cost of the licensed band, we propose a novel LPWAN called Sensor Network Over White Spaces (SNOW) by utilizing the TV white spaces. Specifically, we design, develop, and experiment SNOW, which is highly scalable, energy-efficient, and has a long communication range. SNOW achieves scalability and energy efficiency by enabling concurrent packets reception at a BS using a single radio from numerous sensors and concurrent packets transmission to numerous sensors from the BS using a single radio, simultaneously, which we achieve by proposing a distributed implementation of OFDM. To enable the low-cost and scalable SNOW deployment in practical applications, we implement SNOW using the low-cost and small form-factored COTS devices, where we address multiple practical challenges including the high peak-to-average power ratio, channel state estimation, and carrier offset estimation. Also, we propose an adaptive transmission power protocol to handle the near-far power problem. To enable connecting tens of thousands of nodes over hundreds of kilometers, we further propose a network architecture called SNOW-tree through a seamless integration of multiple SNOWs where they form a tree structure and are under the same management/control. We address the intra- and inter-SNOW interferences by formulating a constrained optimization problem called the scalability optimization problem (SOP) whose objective is to maximize scalability by managing the spectrum sharing across the SNOWs. By proving the NP-hardness of SOP, we then propose two polynomial-time methods to solve it: a greedy heuristic algorithm and a 1/2-approximation algorithm.