论文标题
击球手:知识图嵌入的分层变压器
HittER: Hierarchical Transformers for Knowledge Graph Embeddings
论文作者
论文摘要
本文研究了复杂的多关系知识图中实体和关系的学习表示的挑战性问题。我们提出了基于源实体社区的命中式变压器模型,它是一种层次变压器模型,以共同学习实体关系组成和关系上下文化。我们提出的模型由两个不同的变压器块组成:底部块提取物的特征在源实体的本地邻域中,顶部块从底部块的输出中汇总了关系信息。我们进一步设计了一个蒙版的实体预测任务,以平衡从关系上下文和源实体本身的信息。实验结果表明,击球手在多个链接预测数据集上实现了新的最新结果。我们还提出了一种简单的方法,将击球手整合到Bert中,并在两个freebase factoid问题答案数据集中证明其有效性。
This paper examines the challenging problem of learning representations of entities and relations in a complex multi-relational knowledge graph. We propose HittER, a Hierarchical Transformer model to jointly learn Entity-relation composition and Relational contextualization based on a source entity's neighborhood. Our proposed model consists of two different Transformer blocks: the bottom block extracts features of each entity-relation pair in the local neighborhood of the source entity and the top block aggregates the relational information from outputs of the bottom block. We further design a masked entity prediction task to balance information from the relational context and the source entity itself. Experimental results show that HittER achieves new state-of-the-art results on multiple link prediction datasets. We additionally propose a simple approach to integrate HittER into BERT and demonstrate its effectiveness on two Freebase factoid question answering datasets.