论文标题
X射线和伽玛射线天文学的相位菲涅耳透镜开发
Phase Fresnel Lens Development for X-ray and Gamma-ray Astronomy
论文作者
论文摘要
原则上,衍射光学器件,尤其是相位菲涅耳透镜(PFL),具有构造大型,衍射限制且高效的X射线/$γ$ -RAY望远镜的能力,从而导致角度分辨率和光子通量敏感性的显着改善。随着衍射极限随着光子能量的增加而提高,伽马射线天文学将在整个电磁频谱中提供最佳的角度分辨率。如果可以构建仪表大小的PFL,那么这些光学元件的整个区域都将光子聚焦,将实现源灵敏度的重大提高。我们已经在马里兰大学使用微电机机械系统(MEMS)制造技术制造了小型原型PFL,并在GSFC 600-metre-Meter Interfertemementry测试台上使用8 keV和高效率进行了高效的效率,并使用8 keV和高效率进行了高效率。第一代8 KEV PFL展示了与效率约为20毫秒的角度分辨率$ \ sim $ \ sim $ 70 $ \%$ \%$ \%$ \%的成像。结果表明,基于PFL的光学元件的X射线/$γ$ ray能带的优势成像潜力,其形式可扩展为天文学仪器。基于这种PFL的开发,我们还制造了“原理证明”折射性抗逆性性抗乳剂,初始测量表明在较大的能量范围内几乎均匀的成像性能。这些结果表明,可以缓解衍射光学固有的色度。
In principle, diffractive optics, particularly Phase Fresnel Lenses (PFLs), offer the ability to construct large, diffraction-limited, and highly efficient X-ray/$γ$-ray telescopes, leading to dramatic improvement in angular resolution and photon flux sensitivity. As the diffraction limit improves with increasing photon energy, gamma-ray astronomy would offer the best angular resolution over the entire electromagnetic spectrum. A major improvement in source sensitivity would be achieved if meter-size PFLs can be constructed, as the entire area of these optics focuses photons. We have fabricated small, prototype PFLs using Micro-Electro-Mechanical Systems (MEMS) fabrication techniques at the University of Maryland and measured near diffraction-limited performance with high efficiency using 8 keV and higher energy X-rays at the GSFC 600-meter Interferometry Testbed. A first generation, 8 keV PFL has demonstrated imaging corresponding to an angular resolution of approximately 20 milli-arcseconds with an efficiency $\sim$70$\%$ of the theoretical expectation. The results demonstrate the superior imaging potential in the X-ray/$γ$-ray energy band for PFL-based optics in a format that is scalable for astronomical instrumentation. Based upon this PFL development, we have also fabricated a `proof-of-principle' refractive-diffractive achromat and initial measurements have demonstrated nearly uniform imaging performance over a large energy range. These results indicate that the chromaticity inherent in diffractive optics can be alleviated.