论文标题

网络上多个随机步行者的平均遇到时间

Mean encounter times for multiple random walkers on networks

论文作者

Riascos, Alejandro P., Sanders, David P.

论文摘要

我们介绍了一种一般方法,用于研究连接网络上非交互随机步行者的集体动态。我们分析了$ r $独立(马尔可夫)步行者的运动,每个步行者都由其自身的过渡矩阵定义。通过使用$ r $独立过渡矩阵的特征值和特征向量,我们根据集体固定分布进行分析表达式,以及随机步行者所需的平均步骤数以以特定的配置开始,并首次达到特定的节点(平均第一阶段时间)(平均第一阶段时间),以及全球活动的全球时间。我们将这些结果应用于对不同类型网络的本地和非本地随机步行策略的平均第一次抗议时间,并具有同步运动和异步运动。

We introduce a general approach for the study of the collective dynamics of non-interacting random walkers on connected networks. We analyze the movement of $R$ independent (Markovian) walkers, each defined by its own transition matrix. By using the eigenvalues and eigenvectors of the $R$ independent transition matrices, we deduce analytical expressions for the collective stationary distribution and the average number of steps needed by the random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage times), as well as global times that characterize the global activity. We apply these results to the study of mean first-encounter times for local and non-local random walk strategies on different types of networks, with both synchronous and asynchronous motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源