论文标题
连续可变的门传送和玻色码误差校正
Continuous-variable gate teleportation and bosonic-code error correction
论文作者
论文摘要
我们使用通过BeamSplitter发送的纯产品状态制成的纠缠状态检查了连续变化的门传送。我们表明,这样的状态是(通常是)非独立门的Choi状态,并且我们得出了相关的kraus oberator teleportation,可用于实现在输入状态上的非高斯,非单身量子操作。通过此结果,我们展示了使用Gottesman-Kitaev-Preskill代码编码的玻感量子箱对Gate Teleportation如何使用错误校正。该结果是在确定性产生的大型群集状态的背景下给出的,该状态由恒定深度线性光学网络生成,并补充了GKP状态的概率供应。我们技术的结果是,在没有主动挤压操作的情况下,可以实现栅极传送和误差校正的状态注入 - 一种实验性瓶颈,用于量子光学实现。
We examine continuous-variable gate teleportation using entangled states made from pure product states sent through a beamsplitter. We show that such states are Choi states for a (typically) non-unitary gate, and we derive the associated Kraus operator for teleportation, which can be used to realize non-Gaussian, non-unitary quantum operations on an input state. With this result, we show how gate teleportation is used to perform error correction on bosonic qubits encoded using the Gottesman-Kitaev-Preskill code. This result is presented in the context of deterministically produced macronode cluster states, generated by constant-depth linear optical networks, supplemented with a probabilistic supply of GKP states. The upshot of our technique is that state injection for both gate teleportation and error correction can be achieved without active squeezing operations -- an experimental bottleneck for quantum optical implementations.