论文标题

动态图神经网络,用于在宽区域网络中预测流量

Dynamic Graph Neural Network for Traffic Forecasting in Wide Area Networks

论文作者

Mallick, Tanwi, Kiran, Mariam, Mohammed, Bashir, Balaprakash, Prasanna

论文摘要

广域网络基础设施(WAN),特别是科学和研究WAN,是在实验设施和数据中心之间移动大量科学数据的骨干。随着需求以指数率的增长,这些网络正在努力应对大量数据量,实时响应和整体网络性能。网络运营商越来越多地寻找创新的方法来管理有限的基础网络资源。预测网络流量是主动资源管理,缓解拥堵和专用转移供应的关键能力。为此,我们提出了一个基于图形的非解放图表的神经网络,用于多步网络流量预测。具体而言,我们开发了扩散卷积复发性神经网络的动态变体,以预测研究中的流量。我们评估了我们方法对美国能源部专用科学网络ESNET的真实流量的功效。我们的结果表明,与经典的预测方法相比,我们的方法明确地了解了时空交通模式的动态性质,显示了预测准确性的显着提高。尽管动态的网络流量设置,但我们的技术可以通过在多个小时的预测中实现约20%的绝对百分比误差来超越现有的统计和深度学习方法。

Wide area networking infrastructures (WANs), particularly science and research WANs, are the backbone for moving large volumes of scientific data between experimental facilities and data centers. With demands growing at exponential rates, these networks are struggling to cope with large data volumes, real-time responses, and overall network performance. Network operators are increasingly looking for innovative ways to manage the limited underlying network resources. Forecasting network traffic is a critical capability for proactive resource management, congestion mitigation, and dedicated transfer provisioning. To this end, we propose a nonautoregressive graph-based neural network for multistep network traffic forecasting. Specifically, we develop a dynamic variant of diffusion convolutional recurrent neural networks to forecast traffic in research WANs. We evaluate the efficacy of our approach on real traffic from ESnet, the U.S. Department of Energy's dedicated science network. Our results show that compared to classical forecasting methods, our approach explicitly learns the dynamic nature of spatiotemporal traffic patterns, showing significant improvements in forecasting accuracy. Our technique can surpass existing statistical and deep learning approaches by achieving approximately 20% mean absolute percentage error for multiple hours of forecasts despite dynamic network traffic settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源