论文标题
在平坦和非平板暗能量模型中的生长因子参数化与数值解决方案
The growth factor parametrization versus numerical solutions in flat and non-flat dark energy models
论文作者
论文摘要
在本研究中,我们使用$fσ_{8} $的观察数据来确定平面$(ω_{m0},σ_{8})$中的观察性约束,使用两种不同的方法:生长因子参数化和数值解决方案的密度对比度,$δ_{m} $。我们验证了三种加速扩展模型的两种方法之间的对应关系:$λcdm$模型,$ w_ {0} w_ {a} cdm $模型和运行的宇宙常数$ rcc $模型。在所有情况下,我们也将曲率视为自由参数。该对应关系的研究很重要,因为生长因子参数化方法经常用于区分竞争模型。我们的结果使我们能够确定使用这两种方法之间的观察性约束之间存在良好的对应关系。我们还测试了$Fσ_{8} $数据的功率,以约束$λCDM$模型中的曲率参数。为此,我们使用使用高斯流程的非参数重建。我们的结果表明,具有当前精度级别的$Fσ_{8} $数据不允许区分平面和非灯泡宇宙。
In the present investigation we use observational data of $ f σ_ {8} $ to determine observational constraints in the plane $(Ω_{m0},σ_{8})$ using two different methods: the growth factor parametrization and the numerical solutions method for density contrast, $δ_{m}$. We verified the correspondence between both methods for three models of accelerated expansion: the $ΛCDM$ model, the $ w_{0}w_{a} CDM$ model and the running cosmological constant $RCC$ model. In all case we consider also curvature as free parameter. The study of this correspondence is important because the growth factor parametrization method is frequently used to discriminate between competitive models. Our results we allow us to determine that there is a good correspondence between the observational constrains using both methods. We also test the power of the $ fσ_ {8} $ data to constraints the curvature parameter within the $ ΛCDM $ model. For this we use a non-parametric reconstruction using Gaussian processes. Our results show that the $ fσ_ {8}$ data with the current precision level does not allow to distinguish between a flat and non-flat universe.