论文标题

Schrödinger与2+1个维度的自我非对象矢量的连接

Schrödinger connection with selfdual nonmetricity vector in 2+1 dimensions

论文作者

Klemm, Silke, Ravera, Lucrezia

论文摘要

我们提出了三维指标的重力理论,其场方程导致了几十年前Schrödinger引入的联系。尽管涉及非赞成度,但Schrödinger的连接保留了并行运输下向量的长度,因此似乎比Weyl提出的更为物理。通过考虑具有恒定标态曲率的解决方案,我们获得了非赞誉向量的自偶性关系,这意味着一个方程,也可以根据仿射几何形状出现的不均匀麦克斯韦方程来解释。

We present a three-dimensional metric affine theory of gravity whose field equations lead to a connection introduced by Schrödinger many decades ago. Although involving nonmetricity, the Schrödinger connection preserves the length of vectors under parallel transport, and appears thus to be more physical than the one proposed by Weyl. By considering solutions with constant scalar curvature, we obtain a self-duality relation for the nonmetricity vector which implies a Proca equation that may also be interpreted in terms of inhomogeneous Maxwell equations emerging from affine geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源