论文标题

log Symbletic歧管和$ [Q,r] = 0 $

Log symplectic manifolds and $[Q,R]=0$

论文作者

Lin, Yi, Loizides, Yiannis, Sjamaar, Reyer, Song, Yanli

论文摘要

我们在方向假设下表明,具有简单正常交叉奇异性的对数符号歧管具有稳定的复杂结构,因此是旋转$ _C $。在紧凑型汉密尔顿案件中,我们证明了旋转$ _C $ dirac运算符的索引被量词线捆绑包扭曲满足$ [q,r] = 0 $定理。

We show, under an orientation hypothesis, that a log symplectic manifold with simple normal crossing singularities has a stable almost complex structure, and hence is Spin$_c$. In the compact Hamiltonian case we prove that the index of the Spin$_c$ Dirac operator twisted by a prequantum line bundle satisfies a $[Q,R]=0$ theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源