论文标题
log Symbletic歧管和$ [Q,r] = 0 $
Log symplectic manifolds and $[Q,R]=0$
论文作者
论文摘要
我们在方向假设下表明,具有简单正常交叉奇异性的对数符号歧管具有稳定的复杂结构,因此是旋转$ _C $。在紧凑型汉密尔顿案件中,我们证明了旋转$ _C $ dirac运算符的索引被量词线捆绑包扭曲满足$ [q,r] = 0 $定理。
We show, under an orientation hypothesis, that a log symplectic manifold with simple normal crossing singularities has a stable almost complex structure, and hence is Spin$_c$. In the compact Hamiltonian case we prove that the index of the Spin$_c$ Dirac operator twisted by a prequantum line bundle satisfies a $[Q,R]=0$ theorem.