论文标题
在两个绞线属上
On the genus two skein algebra
论文作者
论文摘要
我们研究了2属表面的绞线代数及其对2属手柄属的绞线模块的作用。我们明确地计算了此动作,并描述了模块如何根据双仿射Hecke代数的多项式表示对某些亚代词的分解。最后,我们表明,这个代数与Arthamonov和Shakirov最近定义的两个球形双仿射Hecke代数的$ t = q $专业化是同构。
We study the skein algebra of the genus 2 surface and its action on the skein module of the genus 2 handlebody. We compute this action explicitly, and we describe how the module decomposes over certain subalgebras in terms of polynomial representations of double affine Hecke algebras. Finally, we show that this algebra is isomorphic to the $t=q$ specialisation of the genus two spherical double affine Hecke algebra recently defined by Arthamonov and Shakirov.