论文标题
转移传统频率和时域特征时
On Transfer Learning of Traditional Frequency and Time Domain Features in Turning
论文作者
论文摘要
在利用机器学习工具来进行离散制造过程中的预测和诊断方面,人们一直在越来越感兴趣。研究聊天的一些最常见的功能包括传统的信号处理工具,例如快速傅立叶变换(FFT),功率频谱密度(PSD)和自动相关函数(ACF)。在这项研究中,我们在监督的学习环境中使用这些工具来识别从转弯实验获得的加速度计信号中的聊天。使用四个不同的工具悬垂长度,其切割速度和切割深度进行实验。然后,我们检查结果信号并将其标记为无聊或无聊的信号。然后使用标记的信号来训练分类器。分类方法包括最常见的算法:支持向量机(SVM),逻辑回归(LR),随机森林(RF)和梯度增强(GB)。我们的结果表明,从傅立叶频谱中提取的功能在训练分类器并对来自相同切割构型的数据进行测试时最有用的功能,其准确度高达%96。但是,在对具有不同结构本征频率的两种不同配置进行训练和测试时,准确性显着下降。因此,我们得出的结论是,尽管这些传统特征可以高度调整到某个过程,但它们的转移学习能力是有限的。我们还将结果与其他两种方法进行了比较,文献中的流行程度不断提高:小波数据包变换(WPT)和集合经验模式分解(EEMD)。后两种方法,尤其是EEMD,对我们的数据集显示了更好的传输学习能力。
There has been an increasing interest in leveraging machine learning tools for chatter prediction and diagnosis in discrete manufacturing processes. Some of the most common features for studying chatter include traditional signal processing tools such as Fast Fourier Transform (FFT), Power Spectral Density (PSD), and the Auto-correlation Function (ACF). In this study, we use these tools in a supervised learning setting to identify chatter in accelerometer signals obtained from a turning experiment. The experiment is performed using four different tool overhang lengths with varying cutting speed and the depth of cut. We then examine the resulting signals and tag them as either chatter or chatter-free. The tagged signals are then used to train a classifier. The classification methods include the most common algorithms: Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and Gradient Boost (GB). Our results show that features extracted from the Fourier spectrum are the most informative when training a classifier and testing on data from the same cutting configuration yielding accuracy as high as %96. However, the accuracy drops significantly when training and testing on two different configurations with different structural eigenfrequencies. Thus, we conclude that while these traditional features can be highly tuned to a certain process, their transfer learning ability is limited. We also compare our results against two other methods with rising popularity in the literature: Wavelet Packet Transform (WPT) and Ensemble Empirical Mode Decomposition (EEMD). The latter two methods, especially EEMD, show better transfer learning capabilities for our dataset.