论文标题

色彩交换不变的拓扑解释:圆环上的六角形晶格

Topological interpretation of color exchange invariants: hexagonal lattice on a torus

论文作者

Cépas, O., Akhmetiev, P. M.

论文摘要

我们在2D着色问题中解释了颜色交换动力学中的一些不变性的对应关系,这是绕组数字的多项式,并在3D中链接数字。一个不变的人可视化为在特殊表面上与ARF-kervaire不变的线路连接,并被解释为由于障碍物而导致的,以通过特殊的连续变形将表面转化为手性图像。我们还考虑了对动力学的其他约束,并查看表面的修改方式。

We explain a correspondence between some invariants in the dynamics of color exchange in a 2d coloring problem, which are polynomials of winding numbers, and linking numbers in 3d. One invariant is visualized as linking of lines on a special surface with Arf-Kervaire invariant one, and is interpreted as resulting from an obstruction to transform the surface into its chiral image with special continuous deformations. We also consider additional constraints on the dynamics and see how the surface is modified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源