论文标题

官员综合与组成结构空间

Person-in-Context Synthesiswith Compositional Structural Space

论文作者

Yin, Weidong, Liu, Ziwei, Sigal, Leonid

论文摘要

尽管取得了重大进展,但与互动人相互作用的复杂图像的受控生成仍然很困难。现有的布局生成方法没有综合现实的人实例;而姿势引导的生成方法集中于一个人,并假设简单或已知的背景。为了应对这些限制,我们提出了一个新问题,\ textbf {context Connthesis}中的人,旨在在一致的上下文中综合各种人实例,并对两者进行用户控制。上下文是由缺乏形状信息的边界框对象布局指定的,而姿势的姿势是通过稀疏注释的关键点。为了处理输入结构的明显差异,我们提出了两个独立的神经分支,以专心地将相应的(上下文/人员)输入组合到共享的``组成结构空间''中,该``组成结构空间''以分散方式编码上下文和人物结构的形状,位置和外观信息。然后,使用多级特征调制策略将此结构空间解码为图像空间,并以自我监督的方式从图像集及其相应的输入中学习。在两个大规模数据集(可可\ cite \ cite {caesar2018cvpr}和Visual Genome \ cite \ cite {krishna2017Visual})上进行了广泛的实验,这表明我们的框架优于最先进的方法W.R.T. W.R.T.合成质量。

Despite significant progress, controlled generation of complex images with interacting people remains difficult. Existing layout generation methods fall short of synthesizing realistic person instances; while pose-guided generation approaches focus on a single person and assume simple or known backgrounds. To tackle these limitations, we propose a new problem, \textbf{Persons in Context Synthesis}, which aims to synthesize diverse person instance(s) in consistent contexts, with user control over both. The context is specified by the bounding box object layout which lacks shape information, while pose of the person(s) by keypoints which are sparsely annotated. To handle the stark difference in input structures, we proposed two separate neural branches to attentively composite the respective (context/person) inputs into shared ``compositional structural space'', which encodes shape, location and appearance information for both context and person structures in a disentangled manner. This structural space is then decoded to the image space using multi-level feature modulation strategy, and learned in a self supervised manner from image collections and their corresponding inputs. Extensive experiments on two large-scale datasets (COCO-Stuff \cite{caesar2018cvpr} and Visual Genome \cite{krishna2017visual}) demonstrate that our framework outperforms state-of-the-art methods w.r.t. synthesis quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源