论文标题
与流行病模型有关的非线性离散时间动力学系统
A non-linear discrete-time dynamical system related to epidemic SISI model
论文作者
论文摘要
我们考虑具有离散时间的SISI流行模型。该模型的关键点是可以将一个人感染两次。这个非线性进化运算符取决于七个参数,我们假设正在考虑的人口规模是恒定的,因此死亡率与单位时间出生率相同。还原为二次随机操作员(QSO),我们研究了SISI模型的动力系统。
We consider SISI epidemic model with discrete-time. The crucial point of this model is that an individual can be infected twice. This non-linear evolution operator depends on seven parameters and we assume that the population size under consideration is constant, so death rate is the same with birth rate per unit time. Reducing to quadratic stochastic operator (QSO) we study the dynamical system of the SISI model.