论文标题
捍卫水处理网络:利用时空效应以进行网络攻击检测
Defending Water Treatment Networks: Exploiting Spatio-temporal Effects for Cyber Attack Detection
论文作者
论文摘要
尽管水处理网络(WTN)是当地社区和公共卫生的关键基础设施,但WTN容易受到网络攻击的影响。有效检测攻击可以捍卫WTN免于排放受污染的水,拒绝通道,销毁设备并引起公众恐惧。尽管在WTNS攻击检测中进行了广泛的研究,但它们仅利用数据特征部分来检测网络攻击。在初步探索了WTN的传感数据之后,我们发现整合时空知识,表示学习和检测算法可以提高攻击检测准确性。为此,我们提出了一个结构化的异常检测框架,以通过对WTN中网络攻击的时空特征进行建模来捍卫WTN。特别是,我们提出了一个时空表示框架,该框架是在将WTN的传感数据分为一系列时间段之后,专门针对网络攻击而定制的。该框架具有两个关键组件。第一个组件是一个时间嵌入模块,以通过将传感器的时间段投影到时间段中,以保留时间段内的时间模式。然后,我们构建时空图(STG),其中节点是传感器,属性是传感器的时间嵌入向量,以描述WTN的状态。第二个组件是空间嵌入模块,该模块了解了从STGS中学习WTN的最终融合。此外,我们设计了一种改进的类SVM模型,该模型利用新设计的成对内核来检测网络攻击。设计的成对内核增强了融合嵌入空间中正常和攻击模式之间的距离。最后,我们使用现实世界数据进行了广泛的实验评估,以证明我们框架的有效性。
While Water Treatment Networks (WTNs) are critical infrastructures for local communities and public health, WTNs are vulnerable to cyber attacks. Effective detection of attacks can defend WTNs against discharging contaminated water, denying access, destroying equipment, and causing public fear. While there are extensive studies in WTNs attack detection, they only exploit the data characteristics partially to detect cyber attacks. After preliminary exploring the sensing data of WTNs, we find that integrating spatio-temporal knowledge, representation learning, and detection algorithms can improve attack detection accuracy. To this end, we propose a structured anomaly detection framework to defend WTNs by modeling the spatio-temporal characteristics of cyber attacks in WTNs. In particular, we propose a spatio-temporal representation framework specially tailored to cyber attacks after separating the sensing data of WTNs into a sequence of time segments. This framework has two key components. The first component is a temporal embedding module to preserve temporal patterns within a time segment by projecting the time segment of a sensor into a temporal embedding vector. We then construct Spatio-Temporal Graphs (STGs), where a node is a sensor and an attribute is the temporal embedding vector of the sensor, to describe the state of the WTNs. The second component is a spatial embedding module, which learns the final fused embedding of the WTNs from STGs. In addition, we devise an improved one class-SVM model that utilizes a new designed pairwise kernel to detect cyber attacks. The devised pairwise kernel augments the distance between normal and attack patterns in the fused embedding space. Finally, we conducted extensive experimental evaluations with real-world data to demonstrate the effectiveness of our framework.