论文标题

模拟监督的深度学习,用于分析细胞细胞的细胞器状态和行为

Simulation-supervised deep learning for analysing organelles states and behaviour in living cells

论文作者

Sekh, Arif Ahmed, Opstad, Ida S., Agarwal, Rohit, Birgisdottir, Asa Birna, Myrmel, Truls, Ahluwalia, Balpreet Singh, Agarwal, Krishna, Prasad, Dilip K.

论文摘要

在许多现实世界中的科学问题中,几乎不可能为监督学习产生基础真理(GT)。原因包括科学仪器,物理现象本身或建模的复杂性所施加的局限性。在活细胞显微镜视频中执行人工智能(AI)任务,例如对小细胞的小细胞结构(例如线粒体)的分割,跟踪和分析是一个很好的例子。显微镜的3D模糊功能,像素大小的数字分辨率,光学特征,噪声特性以及线粒体的复杂的3D可变形形状引起的光学分辨率,都有助于使此问题变得艰难。手动分割1000帧,然后在许多此类视频中对100s线粒体进行手动分割,不仅是赫卡尔琴,而且由于仪器和现象施加的限制而在物理上不准确。无监督的学习产生的结果少于最佳结果,如果要得出与治疗相关的推论,准确性很重要。为了解决这个不可观的问题,我们将建模和深度学习带到了一个联系。我们表明,基于显微镜数据(包括其所有限制)的准确基于物理的建模可能是生成模拟培训​​数据集以进行监督学习的解决方案。我们在这里表明,我们的模拟监督分割方法是研究心肌细胞中线粒体状态和行为的重要推动剂,线粒体在细胞的健康中起着重要作用。我们报告了在活细胞的实际显微镜视频中,线粒体的二元分割(比最佳性能无监督方法好19%)的前所未有的平均IOU得分为91%。我们进一步证明了在单个线粒体规模上进行多类分类,跟踪和形态相关的分析的可能性。

In many real-world scientific problems, generating ground truth (GT) for supervised learning is almost impossible. The causes include limitations imposed by scientific instrument, physical phenomenon itself, or the complexity of modeling. Performing artificial intelligence (AI) tasks such as segmentation, tracking, and analytics of small sub-cellular structures such as mitochondria in microscopy videos of living cells is a prime example. The 3D blurring function of microscope, digital resolution from pixel size, optical resolution due to the character of light, noise characteristics, and complex 3D deformable shapes of mitochondria, all contribute to making this problem GT hard. Manual segmentation of 100s of mitochondria across 1000s of frames and then across many such videos is not only herculean but also physically inaccurate because of the instrument and phenomena imposed limitations. Unsupervised learning produces less than optimal results and accuracy is important if inferences relevant to therapy are to be derived. In order to solve this unsurmountable problem, we bring modeling and deep learning to a nexus. We show that accurate physics based modeling of microscopy data including all its limitations can be the solution for generating simulated training datasets for supervised learning. We show here that our simulation-supervised segmentation approach is a great enabler for studying mitochondrial states and behaviour in heart muscle cells, where mitochondria have a significant role to play in the health of the cells. We report unprecedented mean IoU score of 91% for binary segmentation (19% better than the best performing unsupervised approach) of mitochondria in actual microscopy videos of living cells. We further demonstrate the possibility of performing multi-class classification, tracking, and morphology associated analytics at the scale of individual mitochondrion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源