论文标题
自适应随机搭配与有限元素的收敛性
Convergence of adaptive stochastic collocation with finite elements
论文作者
论文摘要
我们考虑一个椭圆形偏微分方程,其在参数结构域中通过随机搭配方法离散的随机扩散参数和空间域中的有限元方法。我们证明了自适应算法的收敛性,该算法能够自适应地丰富参数空间以及完善有限元网格。
We consider an elliptic partial differential equation with a random diffusion parameter discretized by a stochastic collocation method in the parameter domain and a finite element method in the spatial domain. We prove convergence of an adaptive algorithm which adaptively enriches the parameter space as well as refines the finite element meshes.