论文标题

快速部分傅立叶变换

Fast Partial Fourier Transform

论文作者

Park, Yong-chan, Jang, Jun-Gi, Kang, U

论文摘要

给定时间序列向量,我们如何有效计算傅立叶系数的指定部分?快速傅立叶变换(FFT)是一种广泛使用的算法,该算法在许多机器学习应用程序中计算离散的傅立叶变换。尽管使用普遍存在,但所有已知的FFT算法并未为用户指定需求提供微调选项,即,输出大小(要计算的傅立叶系数的数量)是由输入大小确定的算法。这很重要,因为并非每个使用FFT的应用程序都需要频域的整个频谱,从而导致由于额外的计算而导致效率低下。在本文中,我们提出了一个快速的部分傅立叶变换(PFT),对Cooley-Tukey算法进行了仔细的修改,该算法可以指定一个任意连续范围,该范围应计算该系数。我们在输入和输出大小以及其数值准确性方面得出了PFT的渐近时间复杂性。实验结果表明,我们的算法优于最先进的FFT算法,其速度数量级数量级,而无需牺牲准确性就足够小。

Given a time series vector, how can we efficiently compute a specified part of Fourier coefficients? Fast Fourier transform (FFT) is a widely used algorithm that computes the discrete Fourier transform in many machine learning applications. Despite its pervasive use, all known FFT algorithms do not provide a fine-tuning option for the user to specify one's demand, that is, the output size (the number of Fourier coefficients to be computed) is algorithmically determined by the input size. This matters because not every application using FFT requires the whole spectrum of the frequency domain, resulting in an inefficiency due to extra computation. In this paper, we propose a fast Partial Fourier Transform (PFT), a careful modification of the Cooley-Tukey algorithm that enables one to specify an arbitrary consecutive range where the coefficients should be computed. We derive the asymptotic time complexity of PFT with respect to input and output sizes, as well as its numerical accuracy. Experimental results show that our algorithm outperforms the state-of-the-art FFT algorithms, with an order of magnitude of speedup for sufficiently small output sizes without sacrificing accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源