论文标题
深SR-DDL:深层结构正规化的动态词典学习,以整合多模式和动态功能连接数据以进行多维临床特征
Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations
论文作者
论文摘要
我们提出了一个新型的集成框架,该框架共同模拟了静止状态功能MRI(RS-FMRI)连接性和扩散张量成像(DTI)拖拉术的互补信息,以提取行为的大脑连接性的生物标志物。我们的框架将连接数据数据的生成模型与预测行为得分的深网。生成组件是一个结构规范化的动态词典学习(SR-DDL)模型,该模型将动态RS-FMRI相关矩阵分解为共享基础网络的集合和时间变化的主体特定负载。我们使用DTI拖拉机来正规化此矩阵分解并学习解剖学知情的功能连接曲线。我们框架的深层组成部分是LSTM-ANN块,它使用主题特异性SR-DDL载荷的时间演化来预测多维临床特征。我们的联合优化策略共同估计基本网络,特定于特定时间变化的负载和神经网络权重。我们在从人类连接项目(HCP)数据库的神经型个体的数据集上验证我们的框架,以映射到认知和在五倍的交叉验证设置中诊断出患有自闭症谱系障碍(ASD)的个体的单独的多得分预测任务。我们的混合模型在临床结果预测上的表现优于几种最先进的方法,并学习了可解释的大脑组织的多模式神经特征。
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr-DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.