论文标题

荧光显微镜中的异质标记组合可以通过异质标记组合进行深入学习。

Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy

论文作者

Gomariz, Alvaro, Portenier, Tiziano, Helbling, Patrick M., Isringhausen, Stephan, Suessbier, Ute, Nombela-Arrieta, César, Goksel, Orcun

论文摘要

荧光显微镜可以通过用各种被视为颜色通道的精心挑选的标记染色来详细检查细胞,细胞网络和解剖标记。获得图像中结构的定量表征通常依赖于自动图像分析方法。尽管深度学习方法在其他视力应用中取得了成功,但它们的荧光图像分析的潜力仍然没有引起人们的影响。原因之一是训练准确的模型所需的大量工作量,这些模型通常针对给定的标记组合,因此适用于非常有限的实验设置。我们在这里提出了标记采样和兴奋,这是一种具有模态采样策略的神经网络方法,以及一个新颖的注意模块,可以通过异构数据集进行(i)具有标记组合的异质数据集的灵活培训,以及(ii)在标记的任意子集上,学识渊博的模型成功实用。我们表明,我们的单个神经网络解决方案与上限的上限相似,其中许多网络的合奏是针对每个可能的标记组合的天真训练的。此外,我们通过修改了3D共聚焦显微镜数据集中骨髓脉管系统的最新定量表征,并进一步证实了我们在胎儿肝组织中微绒毛的其他不同数据集中,在3D共聚焦显微镜数据集中对骨髓脉管系统的最新定量表征进行了定量表征,从而证明了该框架在高通量生物学分析中的可行性。我们的工作不仅可以基本上可以改善深度学习在荧光显微镜分析中的使用,而且还可以在其他具有不完整的数据采集和缺失方式的领域中使用。

Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels. Quantitative characterization of structures in acquired images often relies on automatic image analysis methods. Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited. One reason lies in the considerable workload required to train accurate models, which are normally specific for a given combination of markers, and therefore applicable to a very restricted number of experimental settings. We herein propose Marker Sampling and Excite, a neural network approach with a modality sampling strategy and a novel attention module that together enable (i) flexible training with heterogeneous datasets with combinations of markers and (ii) successful utility of learned models on arbitrary subsets of markers prospectively. We show that our single neural network solution performs comparably to an upper bound scenario where an ensemble of many networks is naïvely trained for each possible marker combination separately. In addition, we demonstrate the feasibility of this framework in high-throughput biological analysis by revising a recent quantitative characterization of bone marrow vasculature in 3D confocal microscopy datasets and further confirm the validity of our approach on an additional, significantly different dataset of microvessels in fetal liver tissues. Not only can our work substantially ameliorate the use of deep learning in fluorescence microscopy analysis, but it can also be utilized in other fields with incomplete data acquisitions and missing modalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源