论文标题
副阵列的结构化自相关矩阵估计
Structured Autocorrelation Matrix Estimation for Coprime Arrays
论文作者
论文摘要
副阵列接收器处理了接收信号快照的集合,以估计较大(虚拟)统一线性阵列的自相关矩阵(称为coarray)。通过接收信号模型,该矩阵必须为(i)正排定,(ii)Hermitian,(iii)toeplitz和(iv)其噪声 - 空间特征值必须相等。现有的同时自相关矩阵估计满足上述条件的子集。在这项工作中,我们提出了一个优化框架,该框架提供了满足所有四个条件的新颖估计。数值研究表明,在自相关矩阵估计误差和到达方向估计中,提出的估计值优于标准对应物。
A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigenvalues have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying all four conditions. Numerical studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation matrix estimation error and Direction-of-Arrival estimation.