论文标题

全球$ x $稳定的prandtl扩展的稳定性2D Navier-Stokes流量

Global-in-$x$ Stability of Steady Prandtl Expansions for 2D Navier-Stokes Flows

论文作者

Iyer, Sameer, Masmoudi, Nader

论文摘要

在这项工作中,我们建立了2D,固定的navier-stokes流量的收敛性,$(u^ε,v^ε)$ to经典的prandtl边界层,$(\ bar {u} _p,\ bar {v} _p)$,在域上构成$(0,\ infty)$(0,\ infty) u^ε-\ bar { v^ε-\sqrtε\ bar {v} _p \ | _ {l^\ infty_y} \ Lessim \sqrtε\ langle x \ rangle^{ - \ frac 1 2}。 \ end {equation*}这验证了Prandtl的边界层理论\ textit {loballyline}在$ x $ - 可变量的一大型边界层中,包括经典blasius概况的整个一个参数家族,并具有清晰的衰减速率。结果同时表明了两种感官的渐近稳定性:(1)渐近为$ε\ rightarrow 0 $和(2)渐近造成的,为$ x \ rightarrow \ rightarrow \ rightarrow \ infty $。特别是,我们的结果为Navier-Stokes方程式提供了第一个严格的确认,即边界层在这些稳定制度中无法“分开”,这对于物理和工程应用非常重要。

In this work, we establish the convergence of 2D, stationary Navier-Stokes flows, $(u^ε, v^ε)$ to the classical Prandtl boundary layer, $(\bar{u}_p, \bar{v}_p)$, posed on the domain $(0, \infty) \times (0, \infty)$: \begin{equation*} \| u^ε - \bar{u}_p \|_{L^\infty_y} \lesssim \sqrtε \langle x \rangle^{- \frac 1 4 + δ}, \qquad \| v^ε - \sqrtε \bar{v}_p \|_{L^\infty_y} \lesssim \sqrtε \langle x \rangle^{- \frac 1 2}. \end{equation*} This validates Prandtl's boundary layer theory \textit{globally} in the $x$-variable for a large class of boundary layers, including the entire one parameter family of the classical Blasius profiles, with sharp decay rates. The result demonstrates asymptotic stability in two senses simultaneously: (1) asymptotic as $ε\rightarrow 0$ and (2) asymptotic as $x \rightarrow \infty$. In particular, our result provides the first rigorous confirmation for the Navier-Stokes equations that the boundary layer cannot "separate" in these stable regimes, which is very important for physical and engineering applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源