论文标题
使用动态模式分解学习紧凑的物理意识延迟的光电流模型
Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic Mode Decomposition
论文作者
论文摘要
可以使用基于复杂的物理模型来模拟半导体设备中的辐射诱导的光电流,这些模型是准确但在计算上昂贵的。这对在高级电路模拟中实现设备特性的挑战提出了挑战,在该模拟中,它在计算上是不可行的,可以评估多个单个电路元素的详细模型。在这项工作中,我们展示了一种学习紧凑的延迟光电流模型的程序,该模型足够有效,可以在大规模电路模拟中实施,但仍然忠于基础物理学。我们的方法利用动态模式分解(DMD),这是一种基于单数值分解的时间序列数据,用于学习的系统识别技术从时间序列数据中减少订单离散时间动态系统。为了获得物理感知的设备模型,我们通过求解辐射脉冲诱导的多余载体密度来求解数值的过量载体密度,然后将模拟的内部状态用作DMD算法的训练数据。我们的结果表明,通过该方法获得的明显降低的延迟光电流模型准确地近似于内部过量载流子密度的动力学 - 可用于计算设备边界处的诱导电流 - 同时保持足够的紧凑型,以使其足够合并到大型电路模拟中。
Radiation-induced photocurrent in semiconductor devices can be simulated using complex physics-based models, which are accurate, but computationally expensive. This presents a challenge for implementing device characteristics in high-level circuit simulations where it is computationally infeasible to evaluate detailed models for multiple individual circuit elements. In this work we demonstrate a procedure for learning compact delayed photocurrent models that are efficient enough to implement in large-scale circuit simulations, but remain faithful to the underlying physics. Our approach utilizes Dynamic Mode Decomposition (DMD), a system identification technique for learning reduced order discrete-time dynamical systems from time series data based on singular value decomposition. To obtain physics-aware device models, we simulate the excess carrier density induced by radiation pulses by solving numerically the Ambipolar Diffusion Equation, then use the simulated internal state as training data for the DMD algorithm. Our results show that the significantly reduced order delayed photocurrent models obtained via this method accurately approximate the dynamics of the internal excess carrier density -- which can be used to calculate the induced current at the device boundaries -- while remaining compact enough to incorporate into larger circuit simulations.