论文标题

应用于海洋合奏预测的轨迹聚类的不确定性定量

Uncertainty Quantification of Trajectory Clustering Applied to Ocean Ensemble Forecasts

论文作者

Vieira, Guilherme S., Rypina, Irina I., Allshouse, Michael R.

论文摘要

根据材料运输,将海洋流动到与周围环境不同的区域可以通过减少搜索域来帮助搜索和救援计划。光谱聚类方法通过识别相似的流体颗粒轨迹来分配域。分区有效性取决于海洋预测的准确性,这受到多种不确定性来源:模型初始化,对物理过程的知识有限,边界条件和强迫术语。而不是单个模型输出,而是产生了多个潜在结果的多个实现,并且轨迹聚类用于识别强大的特征并量化集合占据的结果的不确定性。首先,使用集合统计来研究群集对光谱群集方法自由参数的敏感性以及分析性比克利射流的预测参数,分析性比克利射流(一种地质流动流模型)。然后,我们分析了一项运营的沿海海洋合奏预测,并将聚类结果与玛莎葡萄园以南的漂流者轨迹进行了比较。这种方法准确地识别了低不确定性的区域,在整个分析窗口中,在群集中释放的漂流器留在那里。在高不确定性区域释放的漂流者倾向于进入相邻的簇或偏离所有预测结果。

Partitioning ocean flows into regions dynamically distinct from their surroundings based on material transport can assist search-and-rescue planning by reducing the search domain. The spectral clustering method partitions the domain by identifying fluid particle trajectories that are similar. The partitioning validity depends on the accuracy of the ocean forecasting, which is subject to several sources of uncertainty: model initialization, limited knowledge of the physical processes, boundary conditions, and forcing terms. Instead of a single model output, multiple realizations are produced spanning a range of potential outcomes, and trajectory clustering is used to identify robust features and quantify the uncertainty of the ensemble-averaged results. First, ensemble statistics are used to investigate the cluster sensitivity to the spectral clustering method free-parameters and the forecast parameters for the analytic Bickley jet, a geostrophic flow model. Then, we analyze an operational coastal ocean ensemble forecast and compare the clustering results to drifter trajectories south of Martha's Vineyard. This approach accurately identifies regions of low uncertainty where drifters released within a cluster remain there throughout the window of analysis. Drifters released in regions of high uncertainty tend to either enter neighboring clusters or deviate from all predicted outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源