论文标题

英语自由关联网络的分析揭示了远程关联测试有效解决方案的机制

Analysis of English free association network reveals mechanisms of efficient solution of Remote Association Tests

论文作者

Valba, O. V., Gorsky, A. S., Nechaev, S. K., Tamm, M. V.

论文摘要

我们研究英语自由关联网络的结构和属性与心理语言远程关联测试(大鼠)的解决方案之间的相关性。我们表明,单个大鼠的平均硬度在很大程度上取决于自由关联网络上测试单词(刺激和反应)的相对位置。我们认为,大鼠的解决方案可以解释为网络上的第一个段落搜索问题,其顶点是单词,链接是单词之间的关联。我们提出了不同的启发式搜索算法,并证明在“易于解决”的大鼠(在15秒内通过超过64%\%的受试者解决的大鼠)受“强”网络链接(即强关联)的控制,直接连接刺激和响应,因此有效地连接了这种有效的策略。反过来,解决培养基和硬鼠的最有效机制是由“中等弱”关联序列优先组成的。

We study correlations between the structure and properties of a free association network of the English language, and solutions of psycholinguistic Remote Association Tests (RATs). We show that average hardness of individual RATs is largely determined by relative positions of test words (stimuli and response) on the free association network. We argue that the solution of RATs can be interpreted as a first passage search problem on a network whose vertices are words and links are associations between words. We propose different heuristic search algorithms and demonstrate that in "easily-solving" RATs (those that are solved in 15 seconds by more than 64\% subjects) the solution is governed by "strong" network links (i.e. strong associations) directly connecting stimuli and response, and thus the efficient strategy consist in activating such strong links. In turn, the most efficient mechanism of solving medium and hard RATs consists of preferentially following sequence of "moderately weak" associations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源