论文标题

几乎完整的图和两部分图中的大型单色组件

Large monochromatic components in almost complete graphs and bipartite graphs

论文作者

Furedi, Zoltan, Luo, Ruth

论文摘要

Gyárfas证明,$ k_n $的每种着色$ t+1 $颜色包含一个至少$ n/t $的单色连接组件。 Later, Gyárfás and Sárközy asked for which values of $γ=γ(t)$ does the following strengthening for almost complete graphs hold: if $G$ is an $n$-vertex graph with minimum degree at least $(1-γ)n$, then every $(t+1)$-edge coloring of $G$ contains a monochromatic component of size at least $n/t$.我们显示$γ= 1/(6t^3)$就足够了,可以改善Debiasio,Krueger和Sárközy的结果。

Gyárfas proved that every coloring of the edges of $K_n$ with $t+1$ colors contains a monochromatic connected component of size at least $n/t$. Later, Gyárfás and Sárközy asked for which values of $γ=γ(t)$ does the following strengthening for almost complete graphs hold: if $G$ is an $n$-vertex graph with minimum degree at least $(1-γ)n$, then every $(t+1)$-edge coloring of $G$ contains a monochromatic component of size at least $n/t$. We show $γ= 1/(6t^3)$ suffices, improving a result of DeBiasio, Krueger, and Sárközy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源