论文标题
基于随机样式转移的域概括网络集成形状和空间信息
Random Style Transfer based Domain Generalization Networks Integrating Shape and Spatial Information
论文作者
论文摘要
基于深度学习(DL)的模型在医学图像细分中表现出良好的性能。但是,在已知数据集中训练的模型在从不同中心,供应商和疾病人群中收集的看不见的数据集上进行时,通常会失败。在这项工作中,我们提出了一个随机样式转移网络,以解决多供应商和中心心脏图像分割的域概括问题。样式转移用于生成具有更广泛的分布/异质性的培训数据,即扩大域。由于目标域可能未知,因此我们在样式传输阶段中随机生成目标模态的模态向量,以模拟未知域的域移动。该模型可以通过同时优化监督的分割和无监督的样式翻译目标来以半监督的方式进行训练。此外,该框架通过引入两个正规化项来包含目标的空间信息和形状。我们评估了来自M \&MS Challenge2020的40名受试者的拟议框架,并在分割中获得了来自未知供应商和中心的数据的有希望的性能。
Deep learning (DL)-based models have demonstrated good performance in medical image segmentation. However, the models trained on a known dataset often fail when performed on an unseen dataset collected from different centers, vendors and disease populations. In this work, we present a random style transfer network to tackle the domain generalization problem for multi-vendor and center cardiac image segmentation. Style transfer is used to generate training data with a wider distribution/ heterogeneity, namely domain augmentation. As the target domain could be unknown, we randomly generate a modality vector for the target modality in the style transfer stage, to simulate the domain shift for unknown domains. The model can be trained in a semi-supervised manner by simultaneously optimizing a supervised segmentation and an unsupervised style translation objective. Besides, the framework incorporates the spatial information and shape prior of the target by introducing two regularization terms. We evaluated the proposed framework on 40 subjects from the M\&Ms challenge2020, and obtained promising performance in the segmentation for data from unknown vendors and centers.