论文标题
三角矩阵代数的单个类别和戈伦斯坦缺陷类别的2个捕获
2-recollements of singualrity categories and Gorenstein defect categories over triangular matrix algebras
论文作者
论文摘要
令$ t =(a,m,0,b)$是三角矩阵代数,其角代数$ a $ a $和$ b $ artinian和$ _am_b $ a $ a $ a $ a $ a-$ b $ b $ bimodule。研究了奇点类别的2次滚动结构和$ T $以上的Gorenstein缺陷类别。在温和的假设下,我们为奇异类别的两种捕获的存在提供了必要的条件,而Gorenstein缺陷类别超过$ t $,相对于$ a $ a $ a $ a $ a $ b $。我们的部分结果加强了[27,28,34]中的相应工作。
Let $T=(A,M,0,B)$ be a triangular matrix algebra with its corner algebras $A$ and $B$ Artinian and $_AM_B$ an $A$-$B$-bimodule. The 2-recollement structures for singularity categories and Gorenstein defect categories over $T$ are studied. Under mild assumptions, we provide necessary and sufficient conditions for the existences of 2-recollements of singularity categories and Gorenstein defect categories over $T$ relative to those of $A$ and $B$. Parts of our results strengthen and unify the corresponding work in [27,28,34].