论文标题
伯恩赛环单位的功能演示
A functorial presentation of units of Burnside rings
论文作者
论文摘要
让$ b^\ times $成为$ \ mathbb {f} _2 $上的Biset函数,将有限的组〜$ g $发送给该组的$ b^\ times(g)burnside ring $ b(g)$,然后让$ \ wideHat {b^\ times} $是其双重函数。本文的主要定理给出了自然注射的cokernel的$ b^\ times $在双重伯恩赛德函数中的$ \ widehat {\ mathbb {f} _2b} $,或等效地,这是一套明确的发电机$ \ nathcal {g} _s _s $ uspuction of of $ \ mathbb {f} _2b \ to \ wideHat {b^\ times} $。这产生了两个术语的投影分辨率为$ \ wideHat {b^\ times} $,从而导致了有关扩展功能器$ \ mathrm {ext}^1( - ,b^\ times)$的一些信息。对于有限的组$ g $,这还允许描述$ b^\ times(g)$作为$ b^\ times $ b^\ times(t/s)$的限制,$(t/s)$ axpions $(t,s)$ $ g $的$ g $,因此$ t/s $是奇数prime的循环,奇数prime,klein fourd,klein fours fours of diron,dihedral of 8,或roquette 8,或roquette 2 group dihedral of dihedral of dihedral of dihedral of Roquette 2 group 2 group。另一个结果是,Biset Founcor $ b^\ times $不是有限生成的,并且其dual $ \ wideHat {b^\ times} $是有限生成的,但没有有限地呈现。本文的最后结果还表明,$ \ Mathcal {g} _s $是$ L $的最低发电机集,因此,$ L $的亚功能的晶格是无关的。
Let $B^\times$ be the biset functor over $\mathbb{F}_2$ sending a finite group~$G$ to the group $B^\times(G)$ of units of its Burnside ring $B(G)$, and let $\widehat{B^\times}$ be its dual functor. The main theorem of this paper gives a characterization of the cokernel of the natural injection from $B^\times$ in the dual Burnside functor $\widehat{\mathbb{F}_2B}$, or equivalently, an explicit set of generators $\mathcal{G}_S$ of the kernel $L$ of the natural surjection $\mathbb{F}_2B\to \widehat{B^\times}$. This yields a two terms projective resolution of $\widehat{B^\times}$, leading to some information on the extension functors $\mathrm{Ext}^1(-,B^\times)$. For a finite group $G$, this also allows for a description of $B^\times(G)$ as a limit of groups $B^\times(T/S)$ over sections $(T,S)$ of $G$ such that $T/S$ is cyclic of odd prime order, Klein four, dihedral of order 8, or a Roquette 2-group. Another consequence is that the biset functor $B^\times$ is not finitely generated, and that its dual $\widehat{B^\times}$ is finitely generated, but not finitely presented. The last result of the paper shows in addition that $\mathcal{G}_S$ is a minimal set of generators of $L$, and it follows that the lattice of subfunctors of $L$ is uncountable.