论文标题
使用基于纤维的高技能微腔内的三个维度跟踪布朗运动和单个纳米颗粒的表征
Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity
论文作者
论文摘要
解决方案中纳米系统的动态包含大量信息,这些信息与从材料科学到生物学和生物医学应用的不同领域相关。当纳米系统用荧光团或强散射器标记时,可以跟踪其位置并以高空间和时间分辨率揭示内部运动。但是,标记可能是有毒,昂贵的,也可以改变对象的内在特性。在这里,我们同时测量了高技能微腔的三个横向模式的分散频移,以获得未标记的SIO $ _2 $ nanospheres的三维路径,该路径具有$ 300 $ \MATHRMμ$ S的时间,并降至$ 8 $ nm $ nm nm nm spatial spatial分辨率。这使我们能够定量确定诸如极化性,流体动力半径和有效折射率等性能。基于纤维的腔体被整合到直接写入的微流体设备中,该设备可以通过超小的样品体积来精确控制流体。我们的方法可以实现定量纳米材料表征和高带宽处的生物分子运动的分析。
The dynamics of nanosystems in solution contain a wealth of information with relevance for diverse fields ranging from materials science to biology and biomedical applications. When nanosystems are marked with fluorophores or strong scatterers, it is possible to track their position and reveal internal motion with high spatial and temporal resolution. However, markers can be toxic, expensive, or change the object's intrinsic properties. Here, we simultaneously measure dispersive frequency shifts of three transverse modes of a high-finesse microcavity to obtain the three-dimensional path of unlabeled SiO$_2$ nanospheres with $300$$\mathrmμ$s temporal and down to $8$nm spatial resolution. This allows us to quantitatively determine properties such as the polarizability, hydrodynamic radius, and effective refractive index. The fiber-based cavity is integrated in a direct-laser-written microfluidic device that enables the precise control of the fluid with ultra-small sample volumes. Our approach enables quantitative nanomaterial characterization and the analysis of biomolecular motion at high bandwidth.