论文标题
伪休ussian矩阵合奏的特征值的统计特性
Statistical properties of eigenvalues of an ensemble of pseudo-Hermitian Gaussian matrices
论文作者
论文摘要
我们研究了伪 - 温属随机矩阵的特征值的统计特性,其特征值是真实的或复杂的共轭。结果表明,当频谱分成分离的真实和复杂的共轭特征值时,实际的频谱显示出中间不完整的光谱的特征,即所谓的稀薄集合。另一方面,复杂的表现出与真实矩阵的非正常矩阵排斥相兼容的排斥,但对于复合物和季节矩阵而言,较高的排斥力。
We investigate the statistical properties of eigenvalues of pseudo-Hermitian random matrices whose eigenvalues are real or complex conjugate. It is shown that when the spectrum splits into separated sets of real and complex conjugate eigenvalues, the real ones show characteristics of an intermediate incomplete spectrum, that is, of a so-called thinned ensemble. On the other hand, the complex ones show repulsion compatible with cubic-order repulsion of non normal matrices for the real matrices, but higher order repulsion for the complex and quaternion matrices.