论文标题

反转中的深层生成模型:基于各种自动编码器的新方法的审查和开发

Deep generative models in inversion: a review and development of a new approach based on a variational autoencoder

论文作者

Lopez-Alvis, Jorge, Laloy, Eric, Nguyen, Frédéric, Hermans, Thomas

论文摘要

当解决地球物理成像中的逆问题时,可以使用深层生成模型(DGM)来强制实施解决方案,以显示高度结构的空间模式,这些空间模式得到了地下的独立信息(例如地质设置)支持的高度结构化的空间模式。在这种情况下,可以在定义模式的低维参数化的潜在空间中配制反转,并在其中应用马尔可夫链蒙特卡洛或基于梯度的方法。但是,潜在和原始(Pixel)表示之间的生成映射通常是高度非线性的,这可能会导致反转的困难,尤其是对于基于梯度的方法。在此贡献中,我们回顾了与DGM的反转概念框架,并研究了生成映射非线性的主要原因。结果,我们确定了两个目标之间的冲突:生成模式的准确性和基于梯度反转的可行性。此外,我们还可以选择各种自动编码器的某些训练参数(这是DGM的特定实例)如何选择,以实现这两个目标之间的权衡并使用随机梯度偏度方案获得可接受的反转结果。使用具有不同复杂性的通道模式和涉及线性和非线性前向操作员的跨孔孔旅行时间层析成像数据的测试案例,用于评估所提出的方法的性能。

When solving inverse problems in geophysical imaging, deep generative models (DGMs) may be used to enforce the solution to display highly structured spatial patterns which are supported by independent information (e.g. the geological setting) of the subsurface. In such case, inversion may be formulated in a latent space where a low-dimensional parameterization of the patterns is defined and where Markov chain Monte Carlo or gradient-based methods may be applied. However, the generative mapping between the latent and the original (pixel) representations is usually highly nonlinear which may cause some difficulties for inversion, especially for gradient-based methods. In this contribution we review the conceptual framework of inversion with DGMs and study the principal causes of the nonlinearity of the generative mapping. As a result, we identify a conflict between two goals: the accuracy of the generated patterns and the feasibility of gradient-based inversion. In addition, we show how some of the training parameters of a variational autoencoder, which is a particular instance of a DGM, may be chosen so that a tradeoff between these two goals is achieved and acceptable inversion results are obtained with a stochastic gradient-descent scheme. A test case using truth models with channel patterns of different complexity and cross-borehole traveltime tomographic data involving both a linear and a nonlinear forward operator is used to assess the performance of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源