论文标题
SCILENS新闻平台:新闻文章实时评估的系统
SciLens News Platform: A System for Real-Time Evaluation of News Articles
论文作者
论文摘要
我们演示了Scilens新闻平台,这是一种用于评估新闻文章质量的新型系统。 SCILENS新闻平台会自动收集有关新闻文章的上下文信息,并提供有关其有效性和可信度的质量指标。这些质量指标来自i)有关新闻文章的社交媒体讨论,展示了对这些文章的影响力和立场,以及ii)其内容及其参考资料,展示了这些文章的新闻基础。此外,该平台使域专家能够审查文章并评估新闻来源的质量。事实证明,这种新闻文章的增强视图结合了自动提取的指标和域 - 专家评论,它可以帮助平台用户对基础文章的质量更好地达成共识。该平台以分布式和稳健的方式建造,并运行每天处理数千篇新闻文章。我们在Covid-19的新兴主题上评估了SCILENS新闻平台,在其中我们强调了基于三个轴的低质量和高质量新闻媒体之间的差异,即他们的新闻编辑室活动,寻求证据和社交参与。可以在此处找到该平台的实时演示:http://scilens.epfl.ch。
We demonstrate the SciLens News Platform, a novel system for evaluating the quality of news articles. The SciLens News Platform automatically collects contextual information about news articles in real-time and provides quality indicators about their validity and trustworthiness. These quality indicators derive from i) social media discussions regarding news articles, showcasing the reach and stance towards these articles, and ii) their content and their referenced sources, showcasing the journalistic foundations of these articles. Furthermore, the platform enables domain-experts to review articles and rate the quality of news sources. This augmented view of news articles, which combines automatically extracted indicators and domain-expert reviews, has provably helped the platform users to have a better consensus about the quality of the underlying articles. The platform is built in a distributed and robust fashion and runs operationally handling daily thousands of news articles. We evaluate the SciLens News Platform on the emerging topic of COVID-19 where we highlight the discrepancies between low and high-quality news outlets based on three axes, namely their newsroom activity, evidence seeking and social engagement. A live demonstration of the platform can be found here: http://scilens.epfl.ch.