论文标题
在重量 - 单型构想的扭转类似物上
On a torsion analogue of the weight-monodromy conjecture
论文作者
论文摘要
我们制定并研究了重量 - 单型构想的扭转类似物,以在非Archimedean局部领域进行适当的平滑方案。我们证明了这一点,可以在相等的特征非Archimedean局部田地,Abelian品种,表面,由Drinfeld上半部分统一的品种以及旋光品种中的设定理论完整交叉点上证明这一点。在同等特征的情况下,我们的方法依赖于Cadoret建立的Weil II的超副不动物变体。
We formulate and study a torsion analogue of the weight-monodromy conjecture for a proper smooth scheme over a non-archimedean local field. We prove it for proper smooth schemes over equal characteristic non-archimedean local fields, abelian varieties, surfaces, varieties uniformized by Drinfeld upper half spaces, and set-theoretic complete intersections in toric varieties. In the equal characteristic case, our methods rely on an ultraproduct variant of Weil II established by Cadoret.