论文标题
使用完全卷积网络进行实用的2D葡萄芽检测
Towards Practical 2D Grapevine Bud Detection with Fully Convolutional Networks
论文作者
论文摘要
在葡萄栽培中,对植物的视觉检查是测量相关变量的必要任务。在许多情况下,这些视觉检查容易通过计算机视觉方法自动化。芽检测就是这样的视觉任务,是测量重要变量的中心,例如:测量芽阳光暴露,自主修剪,芽计数,类型的分类,芽几何形状表征,节点长度,芽面积,芽面积和芽开发阶段等。本文提出了一种基于完全卷积网络Mobilenet架构(FCN-MN)的葡萄芽检测的计算机方法。为了验证其性能,在检测任务中比较了这种体系结构,并使用强大的芽检测方法,基于补丁分类器扫描窗口(SW),显示了对检测的三个方面的改进:分割,通信识别和本地化。 FCN-MN的最佳版本显示出$ 88.6 \%$的检测F1量度(对于真正的阳性定义为检测到的组件,其与True Bud的相交相交超过$ 0.5 $),而虚假的阳性很小,又小于True Bud。拆分 - 误报重叠的真实芽 - 显示平均分段精度为$ 89.3 \%(21.7)$,而误报 - 误报 - 误报不重叠的true Bud-显示一个平均像素面积仅为$ 8 \%\%$,$ $ $ $ $ bud的区域,距离中心之间的距离为1.1 $ 1.1 $ $ true bud true bud durememeters。本文通过讨论FCN-MN的这些结果将如何产生对芽变量(例如芽数,芽面积和节间长度)的足够准确的测量结果,这表明在实用设置中表现良好。
In Viticulture, visual inspection of the plant is a necessary task for measuring relevant variables. In many cases, these visual inspections are susceptible to automation through computer vision methods. Bud detection is one such visual task, central for the measurement of important variables such as: measurement of bud sunlight exposure, autonomous pruning, bud counting, type-of-bud classification, bud geometric characterization, internode length, bud area, and bud development stage, among others. This paper presents a computer method for grapevine bud detection based on a Fully Convolutional Networks MobileNet architecture (FCN-MN). To validate its performance, this architecture was compared in the detection task with a strong method for bud detection, Scanning Windows (SW) based on a patch classifier, showing improvements over three aspects of detection: segmentation, correspondence identification and localization. The best version of FCN-MN showed a detection F1-measure of $88.6\%$ (for true positives defined as detected components whose intersection-over-union with the true bud is above $0.5$), and false positives that are small and near the true bud. Splits -- false positives overlapping the true bud -- showed a mean segmentation precision of $89.3\% (21.7)$, while false alarms -- false positives not overlapping the true bud -- showed a mean pixel area of only $8\%$ the area of a true bud, and a distance (between mass centers) of $1.1$ true bud diameters. The paper concludes by discussing how these results for FCN-MN would produce sufficiently accurate measurements of bud variables such as bud number, bud area, and internode length, suggesting a good performance in a practical setup.