论文标题
时变的暴露历史记录和随后的健康成果:一种两阶段的方法来识别关键窗口
Time-varying exposure history and subsequent health outcomes: a two-stage approach to identify critical windows
论文作者
论文摘要
长期行为和健康危险因素构成了研究慢性疾病病因的主要重点。然而,确定风险因素对疾病风险产生最大影响的关键时光是具有挑战性的。为了评估暴露历史与结果的关联轨迹,已经提出了加权累积暴露指数(WCIE),权重反映了不同时间暴露的相对重要性。但是,WCIE仅限于完全观察到的无错误暴露,而通常以间歇性的丢失和错误来测量暴露。此外,它很少探索与生命过程流行病学通常寻求的结果非常遥远的暴露历史。我们将WCIE方法扩展到(i)间歇性地测量错误的暴露,以及(ii)使用具有里程碑意义的方法在结果时间窗口之前先于敞口时间的上下文。首先,使用混合模型来估计直到地标时间的个体暴露历史记录,该模型处理缺失的数据和暴露测量中的错误,并得出了预测的完全无错误暴露历史记录。然后,使用WCIE方法来评估预测的暴露历史与地标时间后收集的健康结果之间关联的轨迹。在我们的背景下,健康结果是使用混合模型分析的纵向标记。模拟研究首先证明了使用这种方法获得的正确推断。然后,应用于护士的健康研究(19,415名妇女),以调查BMI历史(从中年的收集)与70岁后的认知能力下降之间的关联。总之,这种方法易于实施,为研究复杂的动态关系提供了灵活的工具,可以在计算暴露测量误差的同时确定关键的动态关系和识别关键时间。
Long-term behavioral and health risk factors constitute a primary focus of research on the etiology of chronic diseases. Yet, identifying critical time-windows during which risk factors have the strongest impact on disease risk is challenging. To assess the trajectory of association of an exposure history with an outcome, the weighted cumulative exposure index (WCIE) has been proposed, with weights reflecting the relative importance of exposures at different times. However, WCIE is restricted to a complete observed error-free exposure whereas exposures are often measured with intermittent missingness and error. Moreover, it rarely explores exposure history that is very distant from the outcome as usually sought in life-course epidemiology. We extend the WCIE methodology to (i) exposures that are intermittently measured with error, and (ii) contexts where the exposure time-window precedes the outcome time-window using a landmark approach. First, the individual exposure history up to the landmark time is estimated using a mixed model that handles missing data and error in exposure measurement, and the predicted complete error-free exposure history is derived. Then the WCIE methodology is applied to assess the trajectory of association between the predicted exposure history and the health outcome collected after the landmark time. In our context, the health outcome is a longitudinal marker analyzed using a mixed model. A simulation study first demonstrates the correct inference obtained with this approach. Then, applied to the Nurses' Health Study (19,415 women) to investigate the association between BMI history (collected from midlife) and subsequent cognitive decline after age 70. In conclusion, this approach, easy to implement, provides a flexible tool for studying complex dynamic relationships and identifying critical time windows while accounting for exposure measurement errors.