论文标题
在立方格子上大多数票数模型的短期蒙特卡洛模拟
Short-time Monte Carlo simulation of the majority-vote model on cubic lattices
论文作者
论文摘要
我们执行短期蒙特卡洛模拟,以研究各向同性两国多数票型模型的关键性,该模型在体积的立方晶格上,$ n = l^3 $,$ l $ the $ l $最高$ 2048 $。我们通过检查新辅助函数$ψ$的缩放属性来获得临界点的精确位置。我们执行有限的时间缩放分析以准确计算整个关键指数集,包括动态临界指数$ z = 2.027(9)$和初始滑移指数$θ= 0.1081(1)$。我们的结果表明,三维中的多数票数模型属于三维ISING模型的相同普遍性类别。
We perform short-time Monte Carlo simulations to study the criticality of the isotropic two-state majority-vote model on cubic lattices of volume $N = L^3$, with $L$ up to $2048$. We obtain the precise location of the critical point by examining the scaling properties of a new auxiliary function $Ψ$. We perform finite-time scaling analysis to accurately calculate the whole set of critical exponents, including the dynamical critical exponent $z=2.027(9)$, and the initial slip exponent $θ= 0.1081(1)$. Our results indicate that the majority-vote model in three dimensions belongs to the same universality class of the three-dimensional Ising model.