论文标题
特殊正交组$ \ mathrm {so}(3)$的固有聚合模型:适合和集体行为
An intrinsic aggregation model on the special orthogonal group $\mathrm{SO}(3)$: well-posedness and collective behaviours
论文作者
论文摘要
我们研究了一个在特殊正交组$ SO(3)$的固有相互作用的聚合模型。我们考虑了取决于平方固有距离的平稳相互作用潜力,并通过最佳的质量传输技术建立了对模型的局部和全局存在。我们还研究了这种解决方案的长期行为,在该行为中,我们提出了足够的条件以形成渐近共识。通过表现出各种渐近模式的数值实验来说明分析结果。
We investigate an aggregation model with intrinsic interactions on the special orthogonal group $SO(3)$. We consider a smooth interaction potential that depends on the squared intrinsic distance, and establish local and global existence of measure-valued solutions to the model via optimal mass transport techniques. We also study the long-time behaviours of such solutions, where we present sufficient conditions for the formation of asymptotic consensus. The analytical results are illustrated with numerical experiments that exhibit various asymptotic patterns.